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Abstract Comparative molecular field analysis region

focusing (CoMFA-RF) and VolSurf methods were employed

to develop 3D-QSAR models for prediction of stability

constants of mono- and 1,4-disubstituted benzenes with a-

Cyclodextrin. The combination of CoMFA fields with some

physicochemical descriptors ultimate to a more predictive

model. We applied two effective feature selection techniques,

genetic algorithm (GA) and successive projection algorithm

(SPA), to extract more informative VolSurf descriptors.

Partial least square and support vector machine (SVM) were

used to model construction and SPA–SVM based VolSurf

descriptors showed excellent performance in predicting sta-

bility constants. The predictive ability of modified CoMFA-

RF and VolSurf models were determined using a test set of 18

compounds result in correlation coefficients of 0.604 and

0.889 respectively. For further model validation, the cross

validation (leave one out), progressive scrambling and

bootstrapping were also applied. Results of both methods

showed that electrostatic and hydrophobic effects and shape

parameters are main influencing factors in inclusion com-

plexation of benzenes derivatives with a-Cyclodextrin. The

results of docking study, which can predict the binding mode

and orientation of guest molecules in Cyclodextrin cavity, are

in agreement with of combined 3D-QSAR models results.

Keywords 3D-QSAR � a-Cyclodextrin � Benzene

derivatives � Docking � Environmental pollutants

Introduction

Cyclodextrins (CD), cyclic oligomers derived from starch,

have attracted tremendous interest in many different fields

of host:guest applications [1]. The most common natural

CDs are a-CD, b-CD and c-CD, consisting of six, seven

and eight [1–4]-linked glucose units, respectively. The CDs

all form doughnut-shaped molecules with their hydroxyl

groups on the outside of the molecule and a relatively

nonpolar and hydrophobic cavity in the middle, which can

encapsulate variety of guest molecules to form noncovalent

inclusion complexes [2]. Because of their structural fea-

tures, CDs have been used to improve properties such as

solubility, dissolution rate, chemical and physical stability

and bioavailability of poorly water-soluble compounds [3].

Therefore, the CDs are the most suitable host molecules for

the recognition of hydrophobic guest molecules, such as

drugs, dyes, detergents, pesticides and etc. in aqueous

media in a wide range of applications in industrial, phar-

maceutical, agricultural and other fields [1, 4–7].

The value of stability (association) constants of

host:guest complexes, as an index of the binding strength

of the inclusion complexes, are of great importance for the

understanding and evaluation of the inclusion complexes

formation [8]. The major interactions that have been put

forward to account for the stabilities of CD inclusion

complexes in aqueous solution were: release of ‘high-

energy’ water from the CD cavity, relief of conformational

strain energy possessed by the uncomplexed CD, the

hydrophobic interaction, electrostatic interactions, hydro-

gen bonding, induction forces and the London dispersion
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force [9, 10]. CDs complex formation usually results from

different combinations of these forces. One approach used

for addressing the contribution each of these forces makes

toward complexation is to rely on quantitative structure-

activity relationships (QSAR) [11]. QSAR, as a method-

ology that allows cost savings by reducing the laboratory

resources needed and the time required to create and

investigate new compounds with better complexing profile,

permits one to separate one type of interaction from

another and to do so quantitatively.

Widespread use of benzene derivatives in chemical

industry as solvents, cooling agents, polymers, insecticides

and herbicides, cause releasing of these chemical into the

environment. Benzene derivatives have preferential sorp-

tion on soils and removal of them is a very difficult task

[12]. As a result, adding facilitating agents such as sur-

factants are necessary to enhance desorption of these

compounds from soils. CDs, as enhancing-solubility com-

pounds, that negligibly adsorbed by soils [13, 14] have

several advantages such as their biodegradability and their

non-toxicity over solvents and surfactants [15, 16]. It’s

showed that the presence of CDs can significantly reduce

biotoxicities of the low-polarity compounds, such as

substituted benzene compounds and pesticides [17].

The inclusion complexes of CDs with the less flexible

molecules, which can only take up a limited number of

conformations within the CD cavity, can give a deeper

understanding of host:guest interactions of CD inclusion

complexation [18]. Thus, the binding of benzenes derivatives

within a-CD cavity, due to the effect of the tightly fitting

benzene ring offers a good system in which to investigate

factors influencing inclusion complexation of CDs.

Different QSAR/QSPR approaches including linear sol-

vation energy relationship (LSER) [19–21], neural networks

[22, 24] and 2D-QSAR [25, 26] have been applied to elucidate

the most important factors influencing the benzenes deriva-

tives interactions within a-CD cavity and to predict the ther-

modynamic stability of their inclusion complexes. But to our

knowledge, just one publication in 3D-QSAR (CoMFA) of

complexation of some natural and modified CDs with guest

molecules was previously reported [29].

Herein, we report a 2D-3D-QSAR analysis, performed by

using the CoMFA and VolSurf methods with some modifi-

cations, for prediction of association constants of a-CD with

mono- and 1,4-disubstituted benzenes. We add some physi-

cochemical descriptors(as 2D descriptors) to COMFA fields

(as 3D descriptors) and apply two efficient variable selection

techniques, successive projections algorithm and genetic

algorithm to select the best VolSurf based descriptors to

improve models predictability. Molecular docking study also

employed to find prevailing binding mode and preferred ori-

entation of benzene derivatives in CD cavity and mechanism

of encapsulation as a whole.

Materials and methods

Data set

The data sets of 72 mono- and 1,4-disubstituted benzenes

were extracted from the work of Guo et al. [27] and the

experimental data to be predicted are the a-CD complex

stability constants (ln Ka) in water at 298 K taken from

references therein. Table 1 displays a complete list of the

chemicals accompany with the reported experimental

data.

Subset selection and model validation

A statistical subset selection was made using largest min-

imum distance (LMD) method to select a balanced and

chemically diverse test set. The LMD approach is based on

extract a number of compounds by maximizing their

mutual distances [28]. The training set of 54 molecules was

used to adjust the parameters of the models, and the rest of

molecules were used to evaluate models prediction ability.

The obtained models were externally validated with a test

set of compounds, which were not considered for QSAR

model generation (test set). The progressive scrambling

method (maximum: 8 bins, minimum: 2 bins and critical

point: 0.85) [29], randomization y-test [30] and boot-

strapping [31] were carried out for the evaluation of the

sensitivity to chance correlations and prediction ability of

the 3D-QSAR models.

Molecular optimization

The three dimensional structure of the guest molecules was

constructed using the standard tools available in SYBYL

7.3 molecular modeling package (Tripos Inc., St. Louis,

USA) running on a Red Hat Linux workstation 4.7. Energy

minimization performed using the Tripos force field with a

distance dependent dielectric and the Powell conjugate

gradient algorithm with a convergence criterion of

0.01 kcal/mol Å. Partial atomic charges were calculated

using the Gasteiger-Hückel method.

VolSurf approach

VolSurf is a computational procedure that generates useful

quantitative 2D descriptors from the 3D maps of molecular

interaction field (MIF) between different probes and all the

atoms in a target molecule. The basic concepts and a

detailed explanation of VolSurf approach have been dem-

onstrated elsewhere [32, 33]. In the present study,

VolSurf? 1.0.4 (Molecular Discovery Ltd., Oxford, UK)

with four probes including the water (OH2), hydrophobic

(DRY), and an H-bond donor (NH) and an H-bond
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Table 1 Names, experimental and calculated stability constants (ln Ka) of mono and 1,4-dissubstituted benzene derivatives

No. X Y ln Ka (exp) ln Ka (CoMFA-2) ln Ka (Volsurf-SPA-SVM)

Pred. Res. Pred. Res.

M01 F H 3.68 3.38 -0.30 3.67 -0.01

M02 Cl H 4.72 4.65 -0.07 4.44 -0.28

M03a Br H 6.29 5.76 -0.53 5.36 -0.93

M04 I H 7.09 6.25 -0.84 6.27 -0.82

M05 F F 2.96 3.29 0.33 2.97 0.01

M06a Cl Cl 5.42 6.02 0.60 5.06 -0.36

M07 Br Br 6.93 6.69 -0.24 6.94 0.01

M08a I I 8.34 7.58 -0.76 8.14 -0.20

M09 Cl F 4.17 5.17 1.00 4.63 0.46

M10 Br F 5.52 5.65 0.13 5.79 0.27

M11 I F 6.89 6.02 -0.88 6.75 -0.14

M12 OCH3 OCH3 4.02 4.12 0.10 4.01 -0.01

M13 Oet Oet 4.85 5.26 0.41 5.25 0.40

M14 CO2Me CO2Me 6.14 6.10 -0.04 4.23 -1.91

M15 COMe COMe 2.32 2.00 -0.32 3.29 0.97

M16 CN CN 3.5 3.51 0.00 3.51 0.01

M17 NO2 NO2 3.58 4.34 0.76 4.32 0.74

M18a COOH COOH 7.2 6.83 -0.37 8.26 1.06

M19 NH2 NH2 0.83 0.90 0.07 0.84 0.01

M20 OCH3 NH2 1.9 2.11 0.21 3.41 1.51

M21 CH3 NH2 4.05 3.91 -0.14 4.04 -0.01

M22 SCH3 OCH3 4.7 4.80 0.10 4.17 -0.53

M23 SCH3 CH2OH 4.44 4.45 0.01 4.47 0.03

M24 SCH3 Br 5.74 5.77 0.03 5.73 -0.01

M25 SCH3 NO2 4.81 3.55 -1.26 4.48 -0.33

M26a SCH3 Cl 5.04 5.44 0.40 5.10 0.06

M27 SCH3 COCH3 2.2 2.28 0.08 4.17 1.97

M28 SCH3 CH3 3.71 4.73 1.02 4.30 0.59

M29 SCH3 NH2 4.62 3.79 -0.84 4.61 -0.01

M30a CH3 H 3.6 3.86 0.26 3.80 0.20

M31a H H 3.35 3.49 0.14 3.18 -0.17

M32 Et H 4.7 4.82 0.12 4.85 0.15

M33 CH3 CH3 4.28 4.90 0.62 4.28 0.00

M34 n-Pr H 6.38 6.21 -0.17 5.78 -0.60

M35 i-Pr H 4.65 5.08 0.43 5.23 0.58

M36a OCH3 H 4.95 4.16 -0.79 4.24 -0.71

M37 OEt H 5.14 4.75 -0.39 5.02 -0.12

M38 CH2OH H 4.57 4.93 0.36 3.84 -0.73

M39 CH2Cl H 5.32 5.09 -0.23 5.33 0.01

M40 CHO H 4.62 4.91 0.29 4.63 0.01

M41 COMe H 4.94 5.17 0.23 4.58 -0.36

M42 CO2Me H 5.36 5.26 -0.10 5.32 -0.04

M43 CO2Et H 5.89 6.32 0.43 5.90 0.01

M44 CN H 4.36 4.97 0.61 4.35 -0.01

M45 NH2 H 2.68 2.77 0.09 3.41 0.73

M46 Cl NH2 5.52 4.89 -0.63 5.51 -0.01

M47a COOH NH2 7.2 5.26 -1.94 7.95 0.75
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acceptor (=O) was used to produce ninety-six Volsurf

descriptors (grid spacing 0.5 Å).

Two variable selection techniques namely successive

projections algorithm (SPA) [34] and genetic algorithm

(GA) [35], run in the MATLAB (version 7.6.0., Math

Works, Inc.), were used to extract the more informative

VolSurf descriptors and generate more predictive model.

The GA was carried out during 200 generations with 30

chromosomes in 1000 runs with probability of mutation 1%

and probability of cross-over 50%.

Model construction

Support vector regression (SVR), which is based on sup-

port vector machines (SVMs) [36] and partial least square

(PLS) [37] are used to predict the stability constant of

inclusion complexation of benzene derivatives with a-CD.

After variable selection process, analysis was performed

using MATLAB and the PLS_ toolbox 5.8.2 (Eigenvector

Research, Inc., Manson WA).

CoMFA fields calculations

The initial CoMFA models were calculated using the

SYBYL7.3 molecular modeling package. The common

fragment, benzene ring, of data set produced by Distill

program (without including bond types in rings) in SYBYL

was selected for rigid automatic alignment and the most

active compound (M08) used as the template for super-

imposition. The aligned molecules are displayed in Fig. 1

CoMFA models are greatly sensitive to the different space

orientations of the molecular collective with respect to the

grid box, so all-orientation search (AOS) was also carried

out on initial orientations of aligned structures by the

rotation procedure written in SYBYL programming lan-

guage (SPL) [38]. The steric (Lennard-Jones) and electro-

static (Coulomb) interaction energies for each molecule

were calculated using a sp3 carbon atom and a ?1 charge

as steric and electrostatic probes, respectively. The default

value of 30 kcal/mol was set as the maximum steric and

electrostatic energy cutoff. Region focusing is an iterative

Table 1 continued

No. X Y ln Ka (exp) ln Ka (CoMFA-2) ln Ka (Volsurf-SPA-SVM)

Pred. Res. Pred. Res.

M48a CN NH2 6.11 2.90 -3.21 4.79 -1.32

M49 NO2 NH2 6.45 5.51 -0.94 5.85 -0.60

M50 CH2NH2 H 2.86 3.18 0.32 2.85 -0.01

M51a CH2CH2NH2 H 3.27 2.37 -0.91 2.85 -0.42

M52a I OH 7.75 7.38 -0.37 7.53 -0.22

M53 Cl OH 5.6 6.05 0.45 5.59 -0.01

M54 Br OH 6.65 6.70 0.05 6.64 -0.01

M55a COOH OH 7.03 6.10 -0.93 7.06 0.03

M56 CN OH 5.06 4.81 -0.25 5.07 0.01

M57a NO2 OH 5.5 6.05 0.55 5.81 0.31

M58a COOH NHCH3 7.17 5.70 -1.47 7.29 0.12

M59 COOH OCH3 6.78 6.32 -0.46 6.78 0.00

M60 COOH CH3 6.99 6.49 -0.50 6.98 -0.01

M61a COOH H 6.53 6.32 -0.22 6.53 0.00

M62 COOH F 6.22 6.18 -0.04 6.21 -0.01

M63a COOH CH3CO 6.8 4.60 -2.20 6.14 -0.66

M64 COOH CN 6.15 5.97 -0.18 6.00 -0.15

M65 COOH NO2 5.86 6.73 0.87 5.87 0.01

M66 NHEt H 4.85 5.06 0.21 4.84 -0.01

M67 NHMe H 4.42 4.46 0.04 4.52 0.10

M68 NMe2 H 5.15 4.61 -0.54 4.20 -0.95

M69a NHCOMe H 4.63 3.91 -0.73 4.74 0.11

M70 CCH H 4.46 4.30 -0.16 4.45 -0.01

M71 OH H 3.7 3.57 -0.13 4.20 0.50

M72 NO2 H 4.49 4.76 0.27 4.81 0.32

a Prediction set

408 J Incl Phenom Macrocycl Chem (2012) 73:405–413

123



procedure which refines a model by improving the weight

for those lattice points which are most related to the model.

This enhances the resolution and predictive capability (q2;

cross validated r2) of followed PLS analysis. Technically,

this corresponds to rotate the model components during a

high-order space [39, 40]. The best model of AOS proce-

dure was picked up, then the effects of changing column

filtering, cut off value and grid spacing were investigated.

Molecular docking

The structure of a-CD was extracted from crystallographic

structure of a-CD-p-bromophenol complex obtained from

Ref. [41]. The optimized structures of benzene derivatives,

as ligands, were transferred into Discovery Studio 2.5

(Accelrys Inc, San Diego, CA, USA) and typed with

CHARMm force field [42]. For preparation of a-CD,

defined as a receptor, the complex typed with CHARMm

force field, hydrogen atoms were added and all water

molecules removed. CDOCKER, a molecular dynamics

(MD) simulated-annealing-based algorithm [43], based on

default protocol settings used to dock benzene derivatives

into the a-CD cavity.

Results and discussions

Cyclodextrins inclusion complexation is a composite pro-

cess of different kind of steric, electrostatic, van der Waals

and hydrophobic interactions. Shape and preorganization

of guest within the host molecule, the size-match of the

host cavity to the guest, and solvation dependencies

appears to play important roles in stability of complexation

of the host:guest inclusion [44]. The fit of the entire or at

least a part of the guest molecule in the cyclodextrin cavity

determines the stability of the inclusion complex and the

selectivity of the complexation process [45]. It is widely

believed that 3D descriptors should provide better

descriptions of the binding interactions in host:guest

chemistry. VolSurf descriptors which derived from the 3D

MIF of a molecule are insensitive to alignment with clear

chemical meaning which quantitatively characterize size,

shape, polarity, and hydrophobicity of molecules wheres

CoMFA calculate steric and electrostatic interactions of

aligned molecular structure.

VolSurf analysis

The multivariate data analysis of the ln Ka and a complete

set of VolSurf descriptors was carried out by PLS routine

of VolSurf. The PLS analysis resulted in five-latent-vari-

ables (LV) model with an R(cal)
2 = 0.775; q2 = 0.443 and

R(pred)
2 = 0.688. Table 2 represents statistical parameters of

VolSurf models. No variable selection was implemented in

the VolSurf program therefore two variable selection

techniques; successive projections algorithm (SPA) and

genetic algorithm (GA) were used to extract more infor-

mative descriptors and build more predictive models.

As it is obvious from Table 2, employing of both SPA

and GA increased the prediction ability but SPA method

give more predictive models. This may be explained by the

fact that GA procedure does not take into account multi-

collinearity effects in the variable selection process,

whereas SPA was designed to minimize such effects. As

SVM analysis taking into accounts both linearity and non-

linearity in model construction, therefore it produces more

predictive models than PLS analysis. The SPA-SVM

analysis resulted in a model with five variables and an

R(cal)
2 = 0.839; q2 = 0.681and R(pred)

2 = 0.889. The pre-

dicted and residual values of ln Ka calculated by SPA-SVM

presented in Table 1.

The five most significant VolSurf descriptors extracted

by SPA feature selection procedure and used as SVM input

are: the percentage of unionized species calculated at pH

Fig. 1 Aligned compounds with highlighted of template molecule for

superimposition

Table 2 Summary of statistical results of VolSurf descriptor based models

Methods Rcal
2 q2 Rpred

2 SEE SEP No. of PC

VolSurf 0.775 0.443 0.688 0.649 1.021 5

SPA-SVM 0.839 0.681 0.889 0.558 0.568 –

SPA-PLS 0.772 0.603 0.859 0.652 0.715 5

GA-SVM 0.753 0.643 0.807 0.698 0.765 –

GA-PLS 0.752 0.58 0.772 0.681 0.778 5
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4(%FU4), molecular weight (MW), solubility profiling

coefficients (L4lgS) that represent the shape of the solu-

bility profile curve, DRDRAC and DRACDO pharmaco-

phoric descriptors that refer to the Dry–Dry-acceptor triplet

and Dry-Acceptor–Donor triplet respectively. %FU4 is a

charge state descriptor and MW is a structural descriptor

represents the size and shape of the guest molecules.

DRDRAC and DRACDO are maximum area of the trian-

gles derived from Dry, H-bond acceptor and H-bond donor

points in a molecule. These descriptors mainly represent

the influence of the shape, size, electrostatic effects and

hydrophobicity of guest molecules on stability constant of

inclusion complexation of benzene derivatives with a-CD.

Figure 2 shows the GRID molecular interaction fields

(MIFs) around most active (diiodobenzene) and most

inactive (diaminobenzene) compounds. Cyan color repre-

sent OH2 probe with energy level of -1 kcal/mol and

green color showed the DRY probe with energy level of

-0.86 kcal/mol. As can be seen from Fig. 2, for the most

active compound (M08) cyan color indicates regions

favorable with hydrophobic effects in para position of

benzene derivatives which caused increasing the stability

constants of a-CD complexation. For the most inactive

compounds, diaminobenzene, red color represent O probe

that refers to H-bond acceptor, can be seen and indicate

unfavorable region with hydrogen bond acceptor substitu-

ents. It could be resulted that the presences of hydrophobic

group in benzene ring (mono- or 1,4-disubstituted)

enhanced the stability constant whereas the presence of

H-bonding groups decrease the stability constants of

inclusion complexes of a-CD with benzene derivatives.

CoMFA analysis

The results of CoMFA analysis are summarized in Table 3.

With a column filtering of 2 kcal/mol and cutoff value

30 kcal/mol for both steric and electrostatic fields, COM-

FA region focusing (COMFA-1) yielded a leave-one-out

(LOO) cross validated q2 = 0.248 with 6 components,

non-cross-validated or calibration, R(cal)
2 of 0.701 with

standard error of estimation, SEE = 0.802. To gain a more

predictive model, some physicochemical descriptors were

employed besides COMFA fields, as the CoMFA did not

consider the hydrophobicity interactions. For this purpose

we used octanol/water partition coefficient (clogP), the

component of the dipole moment across y axis (Dip Y) and

some charged partial surface area (CPSA) descriptors,

including relative negative charge (RNCG) and total

charge weighted of partial negative surface area/total area

(FNSA2), all calculated by SYBYL. The statistical results

of this modified COMFA model is presented in Table 3.

This yielded a model (COMFA-2) with a q2 = 0.647 with

8 components, R(cal)
2 of 0.881 with standard error of esti-

mation SEE = 0.517 and R(pred)
2 = 0.604 with standard

error of prediction SEP = 0.988.

Figure 3 displayed contour maps of CoMFA-region

focusing based on compound M08. The steric interactions

are represented by green- and yellow-colored contours,

while electrostatic interactions are represented by red- and

blue-colored contours. The large size of sterically unfa-

vored yellow region around para position of benzene rings

indicated that the steric effects have important effects on

Fig. 2 GRID molecular interaction fields (MIFs) around a most active and b most inactive compounds

Table 3 Summary of the statistical results for CoMFA models

Statistical parameters CoMFA-1 CoMFA-2

q2 0.248 0.647

Rcal
2 0.701 0.881

Rpred
2 0.393 0.604

SEE 0.802 0.517

SEP 1.222 0.988

F-ratio 18.43 41.65

Component 6 8
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benzene derivatives complexation with a-CD. It could be

clearly seen in M35 and M34 compounds (Table 1) in

which the steric hindrance of isopropyl substitute caused a

reduction of about 2 units in ln Ka with respect to propyl

benzene.

Blue-colored contours represent regions where positive

charge increases stability, whereas red-colored regions

represent areas where negative charge enhances stability.

The large red region across benzene ring indicates that

stability of inclusion complexes will be enhanced by

electropositive group at the mentioned positions. It’s

obvious from Table 1, electropositive group in benzene

ring enhanced the stability complexation of a-CD with

benzene derivatives, e.g., stability constant increase in

halogenated benzene by increasing electropositivity of

halogen group from fluoride to iodo substituent in benzene

ring.

In order to check the reliability of the obtained CoMFA

model to chance correlation we have used the progressive

scrambling method. The obtained values of the sensitivity

to the perturbation dq
20/dryy0

2 , the prediction and cSDEP

produced by a progressive scrambling analyses were 1.103,

0.897 and 0.401 for the CoMFA model respectively. These

values confirm the robustness and independent of chance

correlation of the model. Bootstrapping analysis was car-

ried out with 100 runs to evaluate the statistical confidence

limits of the derived model. An Rbs
2 (average correlation

coefficient for bootstrapping) of 0.929 ± 0.034 and a

SEEbs (average standard error of estimate for bootstrap-

ping) of 0.381 ± 0.224 suggested a good internal consis-

tency of the model.

Docking study

Molecular docking is a rational method which predicts the

predominant binding modes and preferred orientation of

one molecule to a second when bound to each other to form

a stable complex [46]. Figure 4 shows the docked struc-

tures of the most, diiodobenzene (M08), and the least,

diaminobenzene (M19), stable and a typical compound

with two different groups, p-iodophenol (M52), and

inclusion complexes of a-CD. As previous studies are

shown [2, 8], electron-withdrawing, hydrophobic and lar-

ger size groups prefer to locate near the narrower side

(primary rim) of CD, while the wider side (secondary

hydroxyl rim) is predominant position for electron-releas-

ing, hydrophilic and smaller size groups. It seems diiodo-

benzene with two large and hydrophobic groups penetrates

deeply in CD cavity thus it forms a more stable inclusion

complex but p-diaminobenzene with two relatively small

and hydrophilic groups tilts as amino groups stay nearly

outside the cavity therefore it forms less stable inclusion

complexe with a-CD. For a compound like p-iodo phenol

(Fig. 4c) with two different groups, more hydrophobic iodo

group gets into the cavity and the hydrophilic hydroxyl

group stays outside the cavity or stay near the secondary

hydroxyl rim.

Conclusions

3D-QSAR models can give different kinds of informa-

tion in prediction of thermodynamic parameters. Two

3D-QSAR methods were employed to predict stability

constants of inclusion complexes of mono- and 1,4-disub-

stituted benzenes with a-CD. VolSurf, a free alignment

procedure, show a good predictive model, however, by

considering major selected VolSurf descriptors of SPA

approach and SVM analysis a model was obtained that

showed excellent performance in predicting ln Ka. Com-

bination of some physicochemical descriptors and CoMFA

fields yielded a predictive model of a-CD complexation

with benzene derivatives. Results of both methods showed

that hydrophobic and electrostatic effects and shape

parameters are main influencing factors in inclusion com-

plexation of CDs. Docking study, which can predict the

orientation of guest molecules in CD cavity, in agreement

of CoMFA and VolSurf methods, showed that more

hydrophobic groups gets into the CD cavity while hydro-

philic groups preferred to stay outside the cavity. It’s

concluded that, electrostatic and hydrophobic interactions,

by considering steric hindrance, are the mainly driving

forces for a-CD complexation. The obtained 3D-QSAR

models are superior to previously reported models [19–27]

Fig. 3 Contour maps of

CoMFA-region focusing based

on compound M08
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due to its combination of quality and information of

inclusion complexation processes. Such studies help to

better understanding of the mechanisms of CDs inclusion

complexes with benzene derivatives and thus lead to

improve removal efficiency of as such environmental

pollutants.

Acknowledgments We gratefully appreciate to professor S. Kam-

itori (Rare Sugar Research Center and Faculty of Agriculture,

Kagawa University, Japan) for granting permission to access the

Crystallographic Information File (CIF) format of crystallographic

structure of a-CD-p-bromophenol complex.

References

1. Valle, D.E.: Cyclodextrins and their uses: a review. Process

Biochem 39, 1033–1046 (2004)

2. Szejtli, J.: Introduction and general overview of cyclodextrin

chemistry. Chem. Rev. 98, 1743–1754 (1998)

3. Loethen, S., Kim, J., Thompson, D.H.: Biomedical applications

of cyclodextrin based polyrotaxanes. Polym. Rev. 47, 383–418

(2007)

4. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceu-

tical applications. Int. J. Pharm. 329, 1–11 (2007)

5. Ogoshi, T., Harada, A.: Chemical sensors based on cyclodextrin

derivatives. Sensors 8, 4961–4982 (2008)

6. Shpigun, O.A., Ananieva, I.A., Budanova, N.Y., Shapovalova,

E.N.: Use of cyclodextrins for separation of enantiomers. Russ.

Chem. Rev. 72, 1035–1048 (2003)

7. Vyas, A., Saraf, S.: Cyclodextrin based novel drug delivery

systems. J. Inc. Phenom. Macro. Chem. 62, 23–42 (2008)

8. Connors, K.A.: The stability of cyclodextrin complexes in solu-

tion. Chem. Rev. 97, 1325–1358 (1997)

9. Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R.,

Simal-Gándara, J.: A review on the use of cyclodextrins in foods.

Food Hydrocolloid 23, 1631–1640 (2009)

10. Tirapegui, C., Jara, F., Guerrero, J., Rezende, M.C.: Host–guest

interactions in cyclodextrin inclusion complexes with solvato-

chromic dyes. J. Phys. Org. Chem. 19, 786–792 (2005)

11. Dudek, A.Z., Arodz, T., Gálvez, T.: Computational methods in

developing quantitative structure-activity relationships (QSAR):

a review. Comb. Chem. High Throughput Screen 9, 213–228

(2006)

12. Viglianti, C., Hanna, K., de Brauer, C., Germain, P.: Removal of

polycyclic aromatic hydrocarbons from aged-contaminated soil

using cyclodextrins: experimental study. Environ. Pollut. 140,

427–435 (2006)

13. Ko, S.O., Schlautman, M.A., Carraway, E.R.: Partitioning of

hydrophobic organic compounds to hydroxypropyl-b- cyclodex-

trin: experimental studies and model predictions for surfactant-

enhanced remediation applications. Environ. Sci. Technol. 33,

2765–2770 (1999)

14. Sheremata, T.W., Hawari, J.: Cyclodextrins for desorption and

solubilization of 2,4,6-trinitrotoluene and its metabolites from

soil. Environ. Sci. Technol. 34, 3462–3468 (2000)

15. Crini, G.: Recent developments in polysaccharide-based materi-

als used as adsorbents in wastewater treatment. Prog. Polym. Sci.

30, 38–70 (2005)

16. Viglianti, C., Hanna, K., De Brauer, C., Germain, P.: Use of

cyclodextrins as an environmentally friendly extracting agent in

organic aged-contaminated soil remediation. J. Incl. Phenom.

Macro. Chem. 56, 275–280 (2006)

17. Wen-lu, S., Qing-guo, H., Lian-sheng, W.: b-cyclodextrin (b-CD)

influence on the biotoxicities of substituted benzene compounds

and pesticide intermediates. Chemosphere 38, 693–698 (1999)

18. Sakurai, M., Kitagawa, M., Hoshi, H., Inoue, Y., Chujo, R.: A

molecular orbital study of cyclodextrin (cyclomalto-oligosaccharide)

Fig. 4 Docked structures of a the most active compound (M08),

b the most inactive compound (M19) and c a typical compound with

two different groups

412 J Incl Phenom Macrocycl Chem (2012) 73:405–413

123



inclusion complexes. III, dipole moments of cyclodextrins in various

types of inclusion complexes. Carbohydr. Res. 198, 181–191 (1990)

19. Liu, L., Li, W.G., Guo, Q.X.: Regression analysis for the host–

guest interaction of a-cyclodextrin with mono- and 1,4-disubsti-

tuted benzenes. J. Incl. Phenom. Macro. Chem. 34, 413–419

(1999)

20. Liu, L., Guo, Q.X.: Novel prediction for the driving force and

guest orientation in the complexation of b-and a-cyclodextrin

with benzene derivatives. J. Phys. Chem. B 103, 3461–3467

(1999)

21. Guo, Q.X., Luo, S.H., Liu, Y.C.: Substituent effects on the

driving force for inclusion complexation of b-and a-cyclodextrin

with monosubstituted benzene derivatives. J. Incl. Phenom.

Macro. Recog. Chem 30, 173–182 (1998)

22. Guo, Q.X., Liu, L., Cai, W.S., Jiang, Y., Liu, Y.: Driving force

prediction for inclusion complexation of a-cyclodextrin with

benzene derivatives by a wavelet neural network. Chem. Phys.

Lett. 290, 514–518 (1998)

23. Liu, L., Li, W.G., Guo, Q.X.: Association constant prediction for

the inclusion of a-cyclodextrin with benzene derivatives by an

artificial neural network. J. Incl. Phenom. Macro. Chem. 34,

291–298 (1999)

24. Liu, L., Guo, Q.X.: Wavelet neural network and its application to

the inclusion of a-cyclodextrin with benzene derivatives.

J. Chem. Inf. Comput. Sci. 39, 133–138 (1999)

25. Golovanov, I.B., Zhenodarova, S.M., Tsygankova, I.G.: Quanti-

tative structure-property relationship: xxvii. estimation of the free

energy of formation of host: guest complexes of a-cyclodextrin

with benzene derivatives. Russ. J. Gen. Chem. 76, 267–271

(2006)

26. Estrada, E., Perdomo-Lopez, I., Torres-Labandeira, J.J.: Combi-

nation of 2D-, 3D-connectivity and quantum chemical descriptors

in QSPR. Complexation of b- and a-cyclodextrin with benzene

derivatives. J. Chem. Inf. Comput. Sci. 41, 1561–1568 (2001)

27. Suzuki, T., Ishida, M., Fabian, W.: Classical QSAR and com-

parative molecular field analyses of the host-guest interaction of

organic molecules with cyclodextrins. J. Comput. Aided Mol.

Design 14, 669–678 (2000)

28. Marengo, E., Todeschini, R.: A new algorithm for optimal, dis-

tance based experimental design. Chemometr. Intell. Lab. Syst. 1,

37–44 (1992)

29. Clark, R.D., Fox, P.C.: Statistical variation in progressive

scrambling. J. Comput. Aided Mol. Design 18, 563–576 (2004)

30. van der Voet, H.: Comparing the predictive accuracy of models

using a simple randomization test. Chemometr. Intell. Lab. Syst.

25, 313–323 (1994)

31. Cramer, R.D., Patterson, D.E., Bunce, J.D.: Comparative

molecular-field analysis (CoMFA). 1. Effect of shape on binding

of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967

(1988)

32. Cruciani, C., Crivori, P., Carrupt, P.A., Testa, B.: Molecular

fields in quantitative structure-permeation relationships: the

VolSurf approach. Theochem 503, 17–30 (2000)

33. Crivori, P., Cruciani, G., Carrupt, P.A., Testa, B.: Predicting

blood-brain barrier permeation from three-dimensional molecular

structure. J. Med. Chem. 43, 2204–2216 (2000)
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